Муниципальное образовательное казенное учреждение «Верхнеяшкульская СОШ им. А.Д.Емченова»

«Рассмотрено»	«Согласовано»	«Утверждаю»
Руководитель ШМО ЕМЦ	Заместитель директора по УВР	врно директора
Coaf- Causalla CMI	- Данжеева А.В./	Бичкинова Г.Р.
		NA USHAMO
от « 36 » августа 2022г.	от « Змавгуста 2022г.	от «Зравгуста 2022г

Рабочая программа по физике 8 класс

Учитель: Молчанова Е.В.

пос. Верхний Яшкуль

Рабочая программа по учебному предмету «Физика» составлена на основе авторской программы А.В. Перышкина, Н.В. Филонович, Е.М., Е.М. Гутник « Программа основного общего образования. Физика. 7-9 классы», Дрофа, 2014г.

На реализацию данной программы, согласно учебному плану учреждения, отводится 2 часа в неделю, 70 часов в год.

Используемый учебник: Физика: учебник для 8 класса / Перышкин А.В.— М.: «Дрофа», $2019~\Gamma$.

Учебный план МОКУ «ВЯСОШ» на 2022-2023 учебный год предусматривает проведение уроков физике в 8 классе отводится не менее 70 часов (2 час в неделю)

Обоснование выбора УМК для реализации рабочей программы

В учебнике представлен авторский подход в части структурирования учебного материала, определения последовательности его изучения, расширения объема (детализация) содержания, а также путей формирования системы знаний, умений и способов деятельности, развития, воспитания и социализация учащихся. УМК содержит достаточный объем материала для учащихся и учителей, необходимый для организации учебного процесса в основной школе.

Планируемые результаты освоения учебного предмета

Предметные результаты

Тепловые явления

Ученик научится:

- распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи (теплопроводность, конвекция, излучение), агрегатные состояния вещества, поглощение энергии при испарении жидкости и выделение ее при конденсации пара, зависимость температуры кипения от давления;
- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества и закон сохранения энергии;
- различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- решать задачи, используя закон сохранения энергии в тепловых процессах и формулы, связывающие физические величины (количество теплоты, температура, удельная теплоемкость вещества, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик получит возможность научиться:

• использовать знания о тепловых явлениях в повседневной жизни для обеспечения

безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания, тепловых и гидроэлектростанций;

- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Электрические явления

Ученик научится:

- распознавать электрические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, электрический ток и его действия (тепловое, химическое, магнитное).
- составлять схемы электрических цепей с последовательным и параллельным соединением элементов, различая условные обозначения элементов электрических цепей (источник тока, ключ, резистор, реостат, лампочка, амперметр, вольтметр).
- описывать изученные свойства тел и электрические явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, электрические явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля-Ленца, при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний об электрических явлениях.
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля-Ленца) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа электрического поля, мощность тока, формулы расчета электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик получит возможность научиться:

- использовать знания об электрических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля-Ленца и др.);
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата, так и при помощи методов оценки.

Магнитные явления

Ученик научится:

- распознавать магнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и на движущуюся заряженную частицу, действие электрического поля на заряженную частицу.
- описывать изученные свойства тел и магнитные явления, используя физические величины: скорость электромагнитных волн; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, магнитные явления и процессы, используя физические законы; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о магнитных явлениях
- решать задачи, используя физические законы и формулы, связывающие физические величины; на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик получит возможность научиться:

- использовать знания о магнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов.
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;

находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний об магнитных явлениях с использованием математического аппарата, так и при помощи метода оценки.

Световые явления

Учащийся научится:

- распознавать световые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: прямолинейное распространение света, отражение и преломление света, дисперсия света.
- использовать оптические схемы для построения изображений в плоском зеркале и собирающей линзе.
- описывать изученные свойства тел и световые явления, используя физические величины: фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света; при описании верно трактовать физический смысл используемых величин, их обозначения и единицы измерения; находить формулы, связывающие данную физическую величину с другими величинами.
- анализировать свойства тел, световые явления и процессы, используя физические законы: закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение.
- приводить примеры практического использования физических знаний о световых явлениях.
 - решать задачи, используя физические законы (закон прямолинейного

распространения света, закон отражения света, закон преломления света) и формулы, связывающие физические величины (фокусное расстояние и оптическая сила линзы, скорость электромагнитных волн, длина волны и частота света): на основе анализа условия задачи записывать краткое условие, выделять физические величины, законы и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины.

Ученик получит возможность научиться:

- использовать знания о световых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры влияния электромагнитных излучений на живые организмы;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов;
- использовать приемы построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний о световых явлениях с использованием математического аппарата, так и при помощи методов оценки.

Личностные результаты

- 1. сформированность познавательных интересов, интеллектуальных и творческих способностей;
- 2. убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- 3. самостоятельность в приобретении новых знаний и практических умений;
- 4. готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- 5. мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- 6. формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- 1. овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- 2. понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- 3. формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;

- 4. приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения познавательных задач;
- 5. развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- 6. освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- 7. формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Содержание учебного предмета

Содержание обучения представлено в программе разделами «Тепловые явления», «Электрические явления», Магнитные явления», «Световые явления»

Тепловые явления

Тепловое движение. Термометр. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Испарение и конденсация. Кипение. Влажность воздуха. Психрометр. Плавление и кристаллизация. Температура плавления. Зависимость температуры кипения от давления. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Двигатель внутреннего сгорания. Паровая турбина. Холодильник. КПД теплового двигателя. Экологические проблемы использования тепловых машин. Закон сохранения энергии в механических и тепловых процессах.

Лабораторные работы

Лабораторная работа № 1"Сравнение количеств теплоты при смешении воды разной температуры"

Лабораторная работа № 2 «Измерение удельной теплоемкости твердого тела» Лабораторная работа № 3 "Измерение относительной влажности воздуха с помощью термометра»

Электрические явления

Электризация тел. Два рода электрических зарядов. Проводники, непроводники (диэлектрики) и полупроводники. Взаимодействие заряженных тел. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Электрическое поле. Напряжение. Конденсатор. Энергия электрического поля.

Электрический ток. Гальванические элементы и аккумуляторы. Действия электрического тока. Направление электрического тока. Электрическая цепь. Электрический ток в металлах. Сила тока. Амперметр. Вольтметр. Электрическое сопротивление. Закон Ома для участка электрической цепи. Удельное электрическое сопротивление. Реостаты. Последовательное и параллельное соединения проводников.

Работа и мощность тока. Закон Джоуля-Ленца. Лампа накаливания. Электрические нагревательные приборы. Электрический счетчик. Расчет электроэнергии, потребляемой электроприбором. Короткое замыкание. Плавкие предохранители. правила безопасности при работе с источниками электрического тока

Лабораторные работы

Лабораторная работа № 4 "Сборка электрической цепи и измерение силы тока в ее различных участках"

Лабораторная работа № 5 «Измерение напряжения»

Лабораторная работа № 6 "Регулирование силы тока реостатом"

Лабораторная работа № 7 "Определение сопротивления проводника при помощи амперметра и вольтметра"

Лабораторная работа № 8 "Измерение мощности и работы тока в электрической лампе"

Магнитные явления

Постоянные магниты. Взаимодействие магнитов. Магнитное поле. Магнитное поле тока. Электромагниты и их применение. Магнитное поле Земли. Магнитные бури. Действие магнитного поля на проводник с током. Электродвигатель постоянного тока.

Лабораторные работы

Лабораторная работа №9 «Сборка электромагнита и испытание его действия» Лабораторная работа №10 «Изучение электрического двигателя постоянного тока (на модели)»

Световые явления

Источники света. Прямолинейное распространение света в однородной среде. Отражение света. Закон отражения. Плоское зеркало. Преломление света. Линза. Фокусное расстояние и оптическая сила линзы. Построение изображений в линзах. Глаз как оптическая система. Дефекты зрения. Оптические приборы.

Лабораторные работы

Лабораторная работа №11"Получение изображения при помощи линзы"

Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

№п/п	Название тем	Количество отводимых часов	Количество контрольных работ	Количество лабораторных работ
1	Тепловые явления	23	2	3
2	Электрические явления	29	1	5
3	Магнитные явления	5	1	2
4	Световые явления	10	1	1
5	Повторение	3	1	-
	ИТОГО	70	6	11

Календарно-тематическое планирование

$N_{\overline{2}}/N_{\overline{2}}$	Наименования разделов/темы уроков	Количество часов	Дата план.	Дата факт.
	Тема 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ (23 часа)	10002	110144114	4
1	Вводный инструктаж по охране труда.	1		
1	Тепловое движение. Внутренняя энергия.	1		
2	Способы изменения внутренней энергии.	1		
3	Виды теплопередачи. Теплопроводность.	1		
	Конвекция. Излучение.	1		
4	Сравнение видов теплопередачи. Примеры	1		
4	теплопередачи в природе и в технике.	1		
5	Количество теплоты. Удельная теплоемкость	1		
3	вещества.	1		
6	Расчет количества теплоты, необходимого для	1		
O	нагревания тела или выделяемого телом при	1		
	охлаждении			
7	Первичный инструктаж по охране труда на	1		
,	рабочем месте. Лабораторная работа № 1	1		
	"Сравнение количеств теплоты при смешении			
	воды разной температуры"			
8	Решение задач на расчет количества теплоты,	1		
	нахождение удельной теплоемкости вещества.	_		
	Первичный инструктаж по охране труда на			
	рабочем месте. Лабораторная работа № 2			
	«Измерение удельной теплоемкости твердого			
	тела»			
9	Энергия топлива. Закон сохранения и	1		
	превращения энергии в механических и			
	тепловых процессах.			
10	Обобщающее	1		
	Повторение по теме «Тепловые явления»			
11	Контрольная работа №1 "Тепловые явления"	1		
12	Анализ контрольной работы и коррекция УУД.	1		
	Различные агрегатные состояния вещества.			
13	Плавление и отвердевание кристаллических	1		
	тел.			
14	Удельная теплота плавления.	1		
15	Испарение и конденсация.	1		
16	Относительная влажность воздуха и ее	1		
	измерение.			
	Первичный инструктаж по охране труда на			
	рабочем месте. Лабораторная работа № 3			
	"Измерение относительной влажности воздуха			
	с помощью термометра"	<u> </u>		
17	Кипение, удельная теплота парообразования	1		
18	Решение задач на расчет количества теплоты	1		
	при агрегатных переходах.			

4.0	P. 5	T	
19	Работа пара и газа при расширении. Двигатель		
20	внутреннего сгорания. Паровая турбина. КПД теплового двигателя.	1	
21	Повторение темы "Тепловые явления"	1	
22	Товторение темы тепловые явления Контрольная работа № 2 «Тепловые явления»	1	
23	Контрольная расота № 2 «тепловые явления» Анализ контрольной работы и коррекция УУД.	1	
23	Обобщение по теме «Тепловые явления»	1	
	Тема 2. ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ (29 час	(OD)	
24	Электризация тел. Два рода зарядов.	1	
25	Электрическое поле. Делимость	1	
23	электрическог поле. делимость электрического заряда.	1	
26	Строение атома.	1	
27	Объяснение электризации тел.	1	
28	Электрический ток. Электрические цепи.	1	
29	Электрический ток в металлах. Действия	1	
29	электрический ток в металлах. действия электрического тока.	1	
30	Сила тока. Измерение силы тока. Амперметр.	1	
31	Первичный инструктаж по охране труда на	1	
31	рабочем месте. Лабораторная работа № 4	1	
	"Сборка электрической цепи и измерение силы		
	тока в ее различных участках"		
32	Электрическое напряжение.	1	
33	Первичный инструктаж по охране труда на	1	
	рабочем месте. Лабораторная работа № 5		
	«Измерение напряжения»		
34	Электрическое сопротивление проводников.	1	
35	Реостаты. Первичный инструктаж по охране	1	
	труда на рабочем месте. Лабораторная работа		
	№ 6 "Регулирование силы тока реостатом".		
36	Закон Ома для участка цепи.	1	
37	Решение задач на закон Ома.	1	
38	Расчет сопротивления проводников.	1	
39	Первичный инструктаж по охране труда на	1	
	рабочем месте. Лабораторная работа № 7		
	"Определение сопротивления проводника при		
	помощи амперметра и вольтметра".		
40	Последовательное соединение проводников.	1	
41	Параллельное соединение проводников	1	
42-43	Решение задач по теме «Параллельное и	2	
	последовательное соединения проводников».		
44	Работа и мощность электрического тока	1	
45	Первичный инструктаж по охране труда на	1	
	рабочем месте. Лабораторная работа № 8		
	"Измерение мощности и работы тока в		
	электрической лампе".		
46	Конденсатор.	1	
47	Нагревание проводников электрическим током	1	
48	Короткое замыкание. Предохранители.	1	
49-50	Решение задач по теме «Электрические	2	
F 1	явления»	1	
51	Контрольная работа № 3 "Электрические	1	

	явления. Электрический ток"		
52	Анализ контрольной работы и коррекция УУД.	1	
32	Обобщение знаний по теме «Электрические	1	
	явления»		
	Тема 3. МАГНИТНЫЕ ЯВЛЕНИЯ (5часов)		
	Магнитное поле. Магнитное поле прямого	1	
53	тока. Магнитные линии.	1	
	Магнитное поле катушки с током.	1	
	Электромагниты и их применение. Первичный	1	
54	инструктаж по охране труда на рабочем месте.		
J T	Лабораторная работа №9 «Сборка		
	электромагнита и испытание его действия»		
	Постоянные магниты. Магнитное поле	1	
55	постоянных магнитов. Магнитное поле Земли.	1	
	Действие магнитного поля на проводник с	1	
	током. Электрический двигатель. Первичный	1	
	инструктаж по охране труда на рабочем месте.		
56	Лабораторная работа №10 «Изучение		
	электрического двигателя постоянного тока (на		
	модели)»		
	Контрольная работа №4 по теме «Магнитные	1	
57	явления»	-	
	Тема 4. СВЕТОВЫЕ ЯВЛЕНИЯ (10 часов)		
	Анализ контрольной работы и коррекция УУД.	1	
58	Источники света. Прямолинейное	•	
20	распространение света		
59	Видимое движение светил	1	
60	Отражение света. Законы отражения.	1	
	Плоское зеркало. Зеркальное и рассеянное	1	
61	отражение света	-	
62	Преломление света. Закон преломления света.	1	
63	Линзы. Изображения, даваемые линзами	1	
	Первичный инструктаж по охране труда на	1	
	рабочем месте. Лабораторная работа	_	
64	№11"Получение изображения при помощи		
	линзы"		
65	Решение задач на построение в линзах.	1	
66	Контрольная работа № 5 "Световые явления"	1	
	Анализ контрольной работы и коррекция	1	
67	УУД. Глаз и зрение. Очки. Фотографический		
	аппарат.		
	Тема 4. ПОВТОРЕНИЕ (3 часа)		
C 0	Повторение пройденного за курс физики 8	1	
68	класса.		
69	Итоговая контрольная работа.	1	
	· ·	1	
70	Анализ итоговой контрольной работы.		
70	Обобщение пройденного материала по физике		
	за курс 8 класса.		
Итого:		70	
Итого:		70	